Auditorium Exercise Sheet 3
 Differential Equations I for Students of Engineering Sciences

Eleonora Ficola

Department of Mathematics of Hamburg University Winter Semester 2023/2024
06.11.2023

Table of contents

(1) Review of ODEs
(2) Resolution of first order differential equations

- Separable variables ODE
- Substitution method in the similarity equation
(3) Reduction to first order systems
- Linear ODEs of m-th order as linear systems of first order ODEs
(4) Exercises
(5) Appendix

Review of differential equations

A (real, scalar) ODE is an equation in which a function $y=y(t)$ and its derivatives $y^{\prime}, y^{\prime \prime}, \ldots, y^{(m)}$ (up to order $m \in \mathbb{N}$) are related:

$$
\begin{gathered}
F\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m)}\right)=0 \rightarrow m \text {-th order ODE in implicit form } \\
y^{(m)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m-1)}\right) \rightarrow m \text {-th order ODE in explicit form }
\end{gathered}
$$

where $y: I \rightarrow \mathbb{R}, I \subseteq \mathbb{R}$ domain of definition.

Example 1

- The differential equation $6 t^{2} y^{\prime \prime}+\ln (t+8)\left(y^{\prime}\right)^{2}-5=0$ for $t>0$ is given in implicit form. The corresponding explicit expression is $y^{\prime \prime}=\left(5-\ln (t+8)\left(y^{\prime}\right)^{2}\right) / 6 t^{2}$, well-defined for all $t>0$.
- $y^{(4)}=2 t \sin \left(t^{3}\right) / 5-y^{\prime} e^{t} / 2-6 y^{\prime \prime} / 10$ for $t \in \mathbb{R}$ is in explicit form. The corresponding implicit form is $10 y^{(4)}-4 t \sin \left(t^{3}\right)+5 y^{\prime} e^{t}+6 y^{\prime \prime}=0$.

Resolution by separation of variables

A first order ODE of the form

$$
y^{\prime}(t)=g(t) h(y(t))
$$

with g, h continuous real functions is called a separable variables differential equation.

In case $h(y(t)) \neq 0$, we can solve it dividing both sides by $h(y)$ and then integrating with respect to the independent variable t :

$$
\int \frac{\mathrm{d} y}{h(y)} \underset{y \mapsto y(t)}{=} \int \frac{y^{\prime}(t)}{h(y(t))} \mathrm{d} t=\int g(t) \mathrm{d} t
$$

After integrating, solve with respect to y.

Example 2

Solve the ODE $\quad y^{\prime}(t)=2 t y^{3}(t) \quad$ under initial condition $y(0)=1$. Which is the largest interval in which the solution is defined?

Example 2

Solve the ODE $\quad y^{\prime}(t)=2 t y^{3}(t) \quad$ under initial condition $y(0)=1$.
Which is the largest interval in which the solution is defined?
It is a separable variable ODE with $g(t):=2 t$ and $h(y):=y^{3}$. Notice that $y \equiv 0$ is a solution of the equation, but it does NOT satisfy the initial condition. Suppose then $y \neq 0$ and compute:

$$
\begin{gathered}
\int \frac{\mathrm{d} y}{y^{3}} \underset{\substack{y \mapsto y(t)}}{=} \int \frac{y^{\prime}(t)}{y^{3}(t)} \mathrm{d} t=\int 2 t \mathrm{~d} t \\
-\frac{1}{2 y^{2}}=t^{2}+C_{1} \Longrightarrow y(t)= \pm \frac{1}{\sqrt{C_{2}-2 t^{2}}} \rightarrow \text { gen. sol. of the ODE }
\end{gathered}
$$

Employ now the initial condition:

$$
1=y(0)= \pm \frac{1}{\sqrt{C_{2}-2 \cdot 0^{2}}} \Longrightarrow C_{2}=1 \text { and } y(t)=\frac{1}{\sqrt{1-2 t^{2}}} .
$$

Example 2

Solve the ODE $\quad y^{\prime}(t)=2 t y^{3}(t) \quad$ under initial condition $y(0)=1$. Which is the largest interval in which the solution is defined?

The solution $y(t)=\frac{1}{\sqrt{1-2 t^{2}}}$ is well-defined where $1-2 t^{2}>0$, namely in the interval $I=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Figure: Plot of $y(t)=\frac{1}{\sqrt{1-2 t^{2}}}$

Resolution by substitution

Similarity equation

A first order ODE of the type

$$
y^{\prime}=\psi\left(\frac{a t+b y+c}{d t+e y+f}\right)
$$

with $a, \ldots, f \in \mathbb{R}$ is called a similarity equation (or Jacobi equation).
In particular, the following cases are easy to solve by applying a change of variables:

- If $y^{\prime}=\psi(a t+b y+c)$, set $u(t):=a t+b y+c$ to get $u^{\prime}=b \psi(u)+a$;
- If $y^{\prime}=\psi\left(\frac{y}{t}\right)$, set $u(t):=\frac{y}{t}$ to get $u^{\prime}=\frac{\psi(u)-u}{t}$.

In both cases we obtain an ODE with separable variables - to be solved in u !

Example 3

Find the general solution of the ODE

$$
y^{\prime}=\frac{t^{4}+y^{4}}{t y^{3}}, \quad t \neq 0
$$

Example 3

Find the general solution of the ODE

$$
y^{\prime}=\frac{t^{4}+y^{4}}{t y^{3}}, \quad t \neq 0
$$

Rewriting the equation it is $y^{\prime}=\left(\frac{t}{y}\right)^{3}+\frac{y}{t}$, i.e. a similarity equation with $\psi(u)=u+u^{-3}$ (with $a=c=e=f=0$, and $b=d=1$).
We substitute $u(t):=\frac{y}{t} \Longrightarrow y(t)=t u(t) \Longrightarrow y^{\prime}(t)=u(t)+t u^{\prime}(t)$.
We obtain the separable variable ODE: $\mu^{\prime}+t u^{\prime}=\mu^{\prime}+u^{-3}$

$$
\begin{gathered}
\int u^{3} \mathrm{~d} u=\int u^{3} u^{\prime} \mathrm{d} t=\int \frac{1}{t} \mathrm{~d} t \\
u^{4}(t)=4 \ln |t|+C \Longrightarrow u(t)= \pm(4 \ln |t|+C)^{1 / 4}
\end{gathered}
$$

Finally, substitute back: $y(t)=t u(t)= \pm t(4 \ln |t|+C)^{1 / 4}$.

From ODEs to systems

Given a (scalar) ODE of any order $m \in \mathbb{N}$ (for example, in explicit form)

$$
\begin{equation*}
y^{(m)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m-1)}\right) \quad \text { for } y: I \rightarrow \mathbb{R} \tag{1}
\end{equation*}
$$

we introduce the functions $y_{1}, y_{2}, \ldots, y_{m}: I \rightarrow \mathbb{R}$ defined as

$$
y_{1}:=y, y_{2}:=y_{1}^{\prime}=y^{\prime}, y_{3}:=y_{2}^{\prime}=y^{\prime \prime}, \ldots, y_{m}:=\left(y_{m-1}\right)^{\prime}=y^{(m-1)}
$$

thus $y_{m}{ }^{\prime}=y^{(m)}$. We may rewrite the ODE in (1) as

$$
y_{m}^{\prime}=f\left(t, y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right)
$$

If we consider the conditions given by the definitions of y_{1}, \ldots, y_{m}, we obtained a system of m ODEs of order 1 :

$$
\left\{\begin{array}{l}
y_{1}{ }^{\prime}=y_{2} \\
y_{2}{ }^{\prime}=y_{3} \\
\vdots \quad \vdots \\
\left(y_{m-1}\right)^{\prime}=y_{m} \\
\left(y_{m}\right)^{\prime}=f\left(t, y_{1}, y_{2}, y_{3}, \ldots, y_{m}\right)
\end{array}\right.
$$

Linear ODEs of m-th order as linear systems

In case the ODE in (1) is linear of order m and in the explicit form, i.e. it can be written as as

$$
\begin{equation*}
y^{(m)}=b(t)-a_{0}(t) y-a_{1}(t) y^{\prime}-\cdots-a_{m-1}(t) y^{(m-1)} \tag{2}
\end{equation*}
$$

with $a_{0}, a_{1}, \ldots, a_{m-1}, b: I \rightarrow \mathbb{R}$ functions on $I \subseteq \mathbb{R}$, then y is solution of (2) if and only if $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ solves the system

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=y_{2} \tag{3}\\
y_{2}^{\prime}=y_{3} \\
\vdots \quad \vdots \\
\left(y_{m-1}\right)^{\prime}=y_{m} \\
y_{m}^{\prime}=b(t)-a_{0}(t) y-a_{1}(t) y^{\prime}-\cdots-a_{m-1}(t) y^{(m-1)}
\end{array}\right.
$$

Let $\mathbf{Y}(t):=\left(\begin{array}{c}y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{m}(t)\end{array}\right)$ and $\mathbf{B}(t):=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ b(t)\end{array}\right)$ be vectors of n components,
$\mathbf{A}=\left(\begin{array}{cccc}0 & 1 & 0 & \ldots \\ 0 & 0 & 1 & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ -a_{0}(t) & -a_{1}(t) & \cdots & -a_{m-1}(t)\end{array}\right)$ matrix of order n.
Rewrite (3) as

$$
\mathbf{Y}^{\prime}(t)=\mathbf{A}(t) \cdot \mathbf{Y}(t)+\mathbf{B}(t)
$$

- The following bijection holds:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { linear } m \text {-th order ODEs } \\
\text { in explicit form }
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\text { linear systems of } m \text { ODEs } \\
\text { of order } 1
\end{array}\right\} \\
& y^{(m)}=b(t)-\sum_{i=0}^{m-1} a_{i}(t) y^{(i)}(t) \leftrightarrow \quad \mathbf{Y}^{\prime}(t)=\mathbf{A}(t) \cdot \mathbf{Y}(t)+\mathbf{B}(t)
\end{aligned}
$$

Example 4

Rewrite the following IVP of a third order ODE

$$
\left\{\begin{array}{l}
3 y^{\prime \prime \prime}+4 t \cos (2 t) y^{\prime}-e^{t} y+6 t=12, t>5 \tag{4}\\
y(5)=-1, y^{\prime}(5)=0, y^{\prime \prime}(5)=2
\end{array}\right.
$$

as an initial value problem for a first order system.

Example 4

Rewrite the following IVP of a third order ODE

$$
\left\{\begin{array}{l}
3 y^{\prime \prime \prime}+4 t \cos (2 t) y^{\prime}-e^{t} y+6 t=12, t>5 \tag{4}\\
y(5)=-1, y^{\prime}(5)=0, y^{\prime \prime}(5)=2
\end{array}\right.
$$

as an initial value problem for a first order system.
Set $y_{1}:=y, y_{2}:=y_{1}{ }^{\prime}=y^{\prime}, y_{3}:=y_{2}{ }^{\prime}=y^{\prime \prime} \rightarrow y_{3}{ }^{\prime}=y^{\prime \prime \prime}$.
Substituting into (4) returns: $3 y_{3}{ }^{\prime}+4 t \cos (2 t) y_{2}-e^{t} y_{1}+6 t=12$
$\Longrightarrow y_{3}{ }^{\prime}=\left(-4 t \cos (2 t) y_{2}+e^{t} y_{1}+12-6 t\right) / 3$.

$$
\begin{gathered}
\left(\begin{array}{l}
y_{1}{ }^{\prime} \\
y_{2}{ }^{\prime} \\
y_{3}
\end{array}\right)
\end{gathered}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
e^{t} / 3 & -4 t \cos (2 t) / 3 & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\mathbf{Y}^{\prime}
\end{array}\right.
$$

with $\mathbf{Y}(5)=\left(\begin{array}{l}y_{1}(5) \\ y_{2}(5) \\ y_{3}(5)\end{array}\right)=\left(\begin{array}{l}y(5) \\ y^{\prime}(5) \\ y^{\prime \prime}(5)\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$

Exercise 1

Consider the differential equation

$$
\begin{equation*}
\sin (6 t) y^{\prime}-t^{4} y^{\prime \prime \prime}-3 t y^{\prime \prime}+3 y / 4=2 e^{2 t} . \tag{5}
\end{equation*}
$$

(i) Determine the order of the ODE and if it is linear/non-linear, homogeneous/inhomogeneous.
(ii) Write (5) in explicit form in the domain $\{t \in \mathbb{R}: t>0\}$.
(iii) Given the initial values $y^{(i)}(0)=z_{i}$ for $i \in\{0,1,2\}$ and $z_{i} \in \mathbb{R}$, rewrite (5) as a system of first order ODEs with conditions.

Exercise 2

Find the general solution of each of the following separable variables ODEs, then determine the respective solutions of the related problem under the constraint $y(1)=1 / 2$.
(i) $y^{\prime}=6 t^{2} y$;
(iii) $y^{\prime}+\frac{2 x}{y}\left(1+2 x^{2}\right)=0$;
(ii) $y^{\prime}=4 t^{3} \sqrt{t}, t>0$;
(v) $t y^{\prime}=\sqrt{1-y^{2}}, t \in(1,2)$.
(iv) $y^{\prime}=y^{2}-1$;

Exercise 3

Determine the right substitution which transforms each of the following similarity ODEs into a separable variables equation, then solve the equation obtained.

$$
\begin{aligned}
& \text { (i) } \dot{x}=\frac{t^{2}+x^{2}}{t x}, t \neq 0 ; \\
& \text { (ii) } y^{\prime}=\frac{y+2 x}{x}, x \neq 0 ; \\
& \text { (iii) } y^{\prime}=(1+4 x+16 y)^{2} .
\end{aligned}
$$

Appendix

Table of most common integrals

1. $\int x^{n} d x=\frac{x^{n+1}}{n+1} \quad(n \neq-1)$
2. $\int \frac{1}{x} d x=\ln |x|$
3. $\int e^{x} d x=e^{x}$
4. $\int a^{x} d x=\frac{a^{x}}{\ln a}$
5. $\int \sin x d x=-\cos x$
6. $\int \cos x d x=\sin x$
7. $\int \sec ^{2} x d x=\tan x$
8. $\int \csc ^{2} x d x=-\cot x$
9. $\int \sec x \tan x d x=\sec x$
10. $\int \sec x d x=\ln |\sec x+\tan x|$
11. $\int \csc x \cot x d x=-\csc x$
12. $\int \tan x d x=\ln |\sec x|$
13. $\int \csc x d x=\ln |\csc x-\cot x|$
14. $\int \sinh x d x=\cosh x$
15. $\int \cot x d x=\ln |\sin x|$
16. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
17. $\int \cosh x d x=\sinh x$
18. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)$
*19. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|$

AUDITORIUM EXERCISE CLASS 3
Exercise 3 (i) $x=x(t), \quad \dot{x}(t)=\frac{t^{2}+x^{2}}{t x}, \quad t \neq 0$

$$
\begin{aligned}
& u(t):=\frac{x}{t} \rightarrow x=t \cdot u \\
& \dot{x}(t)=\frac{d x}{d t}=\frac{d(t \cdot u)}{d t}= \\
& =u(t)+t u^{\prime}(t)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\dot{x}=\frac{t^{2}}{t x}+\frac{x^{2}}{t x}=\frac{t}{x}+\frac{x}{t}\right] \sim} \\
& \not u+t \cdot u^{\prime} \\
& \Downarrow \quad \frac{1}{4}+\underline{\mu}
\end{aligned}
$$

$\begin{gathered}\operatorname{separable}_{\text {variables }}^{\text {ODE in } u}\end{gathered}\left[t \cdot u^{\prime}(t)=\frac{1}{u}\right] \sim u^{\prime}(t)=\left(\frac{1}{t}\right)\left(\frac{1}{u}\right.$

$$
\tilde{c}_{i}=c_{2}-c_{1}
$$

$\Rightarrow[x(t)=t \cdot u(t)= \pm t \sqrt{2 \ln |t|+C}] \sim \sim \begin{aligned} & \text { If possible, } \\ & \text { check that it's a solution! }\end{aligned}$

$$
\dot{x}(t) \leq \ldots
$$

(ii)

$$
\begin{aligned}
& \left.y^{\prime}=\frac{y+2 x}{x}\right] \text { for } y=y(x), x \neq 0 \\
& y^{\prime}=\frac{y}{x}+2 \quad u(x):=\frac{y}{x} \rightarrow \begin{array}{l}
y(x)=x \cdot u(x) \\
y^{\prime}=u+x \cdot u^{\prime}
\end{array}
\end{aligned}
$$

$$
\psi+x \cdot u^{\prime}=\psi+2
$$

$$
\left[u^{\prime}(x)=\frac{2}{x}\right] \begin{gathered}
\text { separable var. ODE } \\
\text { in } u
\end{gathered}
$$

in $u \quad y=x \cdot u$

$$
\int d u=\int u^{\prime}(x) d x=\int \frac{2}{x} d x \Rightarrow[u=2 \ln |x|+c]^{y=x \cdot u} \Rightarrow[y(x)=x \cdot(2 \ln |x|+c),
$$

$$
\begin{aligned}
& c_{1}+\frac{u^{2}}{2}=\int u d u=\int u_{w} \cdot \underbrace{u^{\prime}} d t=\int \frac{1}{t} d t=\ln |t|+c_{2} \\
& C_{x} \rightarrow \frac{u^{2}}{2}=\ln |t|+\tilde{c} \Rightarrow u(t)= \pm \sqrt{2 \ln |t|+2 \tilde{C}} \Rightarrow[u(t)= \pm \sqrt{2 \ln |t|+c}], \quad \Rightarrow
\end{aligned}
$$

Exercise 1

$$
\sin (6 t) \cdot y^{\prime}-t^{4} \cdot y^{\prime \prime \prime}-3 t \cdot y^{\prime \prime}+\frac{3}{4} y=2 e^{2 t} \quad \text { in } \quad I:=\{t>0\}
$$

(i) ODE of order $m=3$, linear, in homogeneous

$$
L b(t)=2 e^{t}
$$

(ii) Explicit form = ?

$$
C_{2} y^{\prime \prime \prime}=
$$

Divide by the coifs. of $y^{\prime \prime \prime}\left(-t^{4} \neq 0\right)$:

$$
\begin{aligned}
& \text { Divide by the coifs of } \\
& y^{\prime \prime \prime}=\frac{-3 t}{t^{3}} y^{\prime \prime}+\frac{\sin (6 t)}{t^{4}} y^{\prime}+\frac{3}{4 t^{4}} y-\frac{2 e^{2 t}}{t^{4}} \text { in }\{t>0\}
\end{aligned}
$$

(iii) Rewriting as system:

$$
\left(y_{3}\right)^{\prime}=\frac{-3}{t^{3}} \cdot y_{3}+\frac{\sin (6 t)}{t^{4}} \cdot y_{2}+\frac{3}{4 t^{4}} \cdot y_{1}-\frac{2 e^{2 t}}{t^{4}} \leftarrow
$$

Initial conditions
Set $y_{1}:=y$

$$
\begin{aligned}
& y_{2} i=y_{1}^{\prime}=y^{\prime} \leftarrow \\
& y_{3}:=y_{2}^{\prime}=y^{\prime \prime} \leftarrow y^{\prime \prime \prime}=y_{3}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
y_{1}(0)=z_{0} \\
y_{2}(0)=z_{1} \\
y_{3}(0)=z_{2}
\end{array} \rightarrow Y(0)=\left(\begin{array}{l}
y_{1}(0) \\
y_{2}(0) \\
y_{3}(0)
\end{array}\right)=\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right) \leftarrow \operatorname{imitial~}_{\substack{\text { indictions } \\
\text { cons }}} \\
& \text { in matricide form }
\end{aligned}
$$

